LowLevelers
Published on

Rust Practices with Rustlings - Iterators

Authors
Thumbnail

Chapter 18 - Iterators

Exercise 1

// When performing operations on elements within a collection, iterators are
// essential. This module helps you get familiar with the structure of using an
// iterator and how to go through elements within an iterable collection.
//

#[test]
fn main() {
    let my_fav_fruits = vec!["banana", "custard apple", "avocado", "peach", "raspberry"];

    let mut my_iterable_fav_fruits = ???;

    assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana"));
    assert_eq!(my_iterable_fav_fruits.next(), ???);     // TODO: Step 2
    assert_eq!(my_iterable_fav_fruits.next(), Some(&"avocado"));
    assert_eq!(my_iterable_fav_fruits.next(), ???);     // TODO: Step 3
    assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry"));
    assert_eq!(my_iterable_fav_fruits.next(), ???);     // TODO: Step 4
}


Solution:

// When performing operations on elements within a collection, iterators are
// essential. This module helps you get familiar with the structure of using an
// iterator and how to go through elements within an iterable collection.
//

#[test]
fn main() {
    let my_fav_fruits = vec!["banana", "custard apple", "avocado", "peach", "raspberry"];

    let mut my_iterable_fav_fruits = my_fav_fruits.iter();

    assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana"));
    assert_eq!(my_iterable_fav_fruits.next(), Some(&"custard apple"));     // TODO: Step 2
    assert_eq!(my_iterable_fav_fruits.next(), Some(&"avocado"));
    assert_eq!(my_iterable_fav_fruits.next(), Some(&"peach"));     // TODO: Step 3
    assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry"));
    assert_eq!(my_iterable_fav_fruits.next(), None);     // TODO: Step 4
}

Exercise 2

// In this exercise, you'll learn some of the unique advantages that iterators
// can offer. Follow the steps to complete the exercise.

// Step 1.
// Complete the `capitalize_first` function.
// "hello" -> "Hello"
pub fn capitalize_first(input: &str) -> String {
    let mut c = input.chars();
    match c.next() {
        None => String::new(),
        Some(first) => ???,
    }
}

// Step 2.
// Apply the `capitalize_first` function to a slice of string slices.
// Return a vector of strings.
// ["hello", "world"] -> ["Hello", "World"]
pub fn capitalize_words_vector(words: &[&str]) -> Vec<String> {
    vec![]
}

// Step 3.
// Apply the `capitalize_first` function again to a slice of string slices.
// Return a single string.
// ["hello", " ", "world"] -> "Hello World"
pub fn capitalize_words_string(words: &[&str]) -> String {
    String::new()
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_success() {
        assert_eq!(capitalize_first("hello"), "Hello");
    }

    #[test]
    fn test_empty() {
        assert_eq!(capitalize_first(""), "");
    }

    #[test]
    fn test_iterate_string_vec() {
        let words = vec!["hello", "world"];
        assert_eq!(capitalize_words_vector(&words), ["Hello", "World"]);
    }

    #[test]
    fn test_iterate_into_string() {
        let words = vec!["hello", " ", "world"];
        assert_eq!(capitalize_words_string(&words), "Hello World");
    }
}

Following the instruction, we have:

  • Step 1: Complete the capitalize_first function by make the first character of the string uppercase and add it again to the rest of the string.
  • Step 2: Apply the capitalize_first function to a slice of string slices. Return a vector of strings.
  • Step 3: Apply the capitalize_first function again to a slice of string slices. Return a single string.
// Step 1.
// Complete the `capitalize_first` function.
// "hello" -> "Hello"
pub fn capitalize_first(input: &str) -> String {
    let mut c = input.chars();
    match c.next() {
        None => String::new(),
        Some(first) => first.to_uppercase().to_string() + c.as_str(),
    }
}

// Step 2.
// Apply the `capitalize_first` function to a slice of string slices.
// Return a vector of strings.
// ["hello", "world"] -> ["Hello", "World"]
pub fn capitalize_words_vector(words: &[&str]) -> Vec<String> {
    let mut v: Vec<String> = Vec::new();
    let vec_iter = words.iter();
    for word in vec_iter {
        v.push(capitalize_first(word));
    }
    v
}

// Step 3.
// Apply the `capitalize_first` function again to a slice of string slices.
// Return a single string.
// ["hello", " ", "world"] -> "Hello World"
pub fn capitalize_words_string(words: &[&str]) -> String {
    let mut new_str: String = String::new();
    let vec_iter = words.iter();
    for word in vec_iter {
        new_str += &capitalize_first(word);
    }
    new_str
}

Exercise 3

// This is a bigger exercise than most of the others! You can do it! Here is
// your mission, should you choose to accept it:
// 1. Complete the divide function to get the first four tests to pass.
// 2. Get the remaining tests to pass by completing the result_with_list and
//    list_of_results functions.

#[derive(Debug, PartialEq, Eq)]
pub enum DivisionError {
    NotDivisible(NotDivisibleError),
    DivideByZero,
}

#[derive(Debug, PartialEq, Eq)]
pub struct NotDivisibleError {
    dividend: i32,
    divisor: i32,
}

// Calculate `a` divided by `b` if `a` is evenly divisible by `b`.
// Otherwise, return a suitable error.
pub fn divide(a: i32, b: i32) -> Result<i32, DivisionError> {
    todo!();
}

// Complete the function and return a value of the correct type so the test
// passes.
// Desired output: Ok([1, 11, 1426, 3])
fn result_with_list() -> () {
    let numbers = vec![27, 297, 38502, 81];
    let division_results = numbers.into_iter().map(|n| divide(n, 27));
}

// Complete the function and return a value of the correct type so the test
// passes.
// Desired output: [Ok(1), Ok(11), Ok(1426), Ok(3)]
fn list_of_results() -> () {
    let numbers = vec![27, 297, 38502, 81];
    let division_results = numbers.into_iter().map(|n| divide(n, 27));
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_success() {
        assert_eq!(divide(81, 9), Ok(9));
    }

    #[test]
    fn test_not_divisible() {
        assert_eq!(
            divide(81, 6),
            Err(DivisionError::NotDivisible(NotDivisibleError {
                dividend: 81,
                divisor: 6
            }))
        );
    }

    #[test]
    fn test_divide_by_0() {
        assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
    }

    #[test]
    fn test_divide_0_by_something() {
        assert_eq!(divide(0, 81), Ok(0));
    }

    #[test]
    fn test_result_with_list() {
        assert_eq!(format!("{:?}", result_with_list()), "Ok([1, 11, 1426, 3])");
    }

    #[test]
    fn test_list_of_results() {
        assert_eq!(
            format!("{:?}", list_of_results()),
            "[Ok(1), Ok(11), Ok(1426), Ok(3)]"
        );
    }
}

Solution:

pub fn divide(a: i32, b: i32) -> Result<i32, DivisionError> {
    if b == 0 {
        Err(DivisionError::DivideByZero)
    } else if a % b == 0 {
        Ok(a / b)
    } else {
        Err(DivisionError::NotDivisible(NotDivisibleError {
            dividend: a,
            divisor: b,
        }))
    }
}

// Complete the function and return a value of the correct type so the test
// passes.
// Desired output: Ok([1, 11, 1426, 3])
fn result_with_list() -> Result<Vec<i32>, DivisionError> {
    let numbers = vec![27, 297, 38502, 81];
    let division_results = numbers.into_iter().map(|n| divide(n, 27));
    let mut v: Vec<i32> = Vec::new();
    for result in division_results {
        match result {
            Ok(n) => v.push(n),
            Err(e) => return Err(e),
        }
    }
    Ok(v)
}

// Complete the function and return a value of the correct type so the test
// passes.
// Desired output: [Ok(1), Ok(11), Ok(1426), Ok(3)]
fn list_of_results() -> Vec<Result<i32, DivisionError>> {
    let numbers = vec![27, 297, 38502, 81];
    let division_results = numbers.into_iter().map(|n| divide(n, 27));
    let mut v: Vec<Result<i32, DivisionError>> = Vec::new();
    for result in division_results {
        v.push(result);
    }
    v
}

Exercise 4

pub fn factorial(num: u64) -> u64 {
    // Complete this function to return the factorial of num
    // Do not use:
    // - return
    // Try not to use:
    // - imperative style loops (for, while)
    // - additional variables
    // For an extra challenge, don't use:
    // - recursion
    // Execute `rustlings hint iterators4` for hints.
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn factorial_of_0() {
        assert_eq!(1, factorial(0));
    }

    #[test]
    fn factorial_of_1() {
        assert_eq!(1, factorial(1));
    }
    #[test]
    fn factorial_of_2() {
        assert_eq!(2, factorial(2));
    }

    #[test]
    fn factorial_of_4() {
        assert_eq!(24, factorial(4));
    }
}

Solution:

  • We can use fold or rfold to solve this problem.

This operation is sometimes called ‘reduce’ or ‘inject’.
Folding is useful whenever you have a collection of something, and want to produce a single value from it.

pub fn factorial(num: u64) -> u64 {
    (1..=num).fold(1, |acc, x| acc * x)
    // or - (1..=num).rfold(1, |acc, x| acc * x)
}

Exercise 5

// Let's define a simple model to track Rustlings exercise progress. Progress
// will be modelled using a hash map. The name of the exercise is the key and
// the progress is the value. Two counting functions were created to count the
// number of exercises with a given progress. Recreate this counting
// functionality using iterators. Try not to use imperative loops (for, while).
// Only the two iterator methods (count_iterator and count_collection_iterator)
// need to be modified.

use std::collections::HashMap;

#[derive(Clone, Copy, PartialEq, Eq)]
enum Progress {
    None,
    Some,
    Complete,
}

fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
    let mut count = 0;
    for val in map.values() {
        if val == &value {
            count += 1;
        }
    }
    count
}

fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
    // map is a hashmap with String keys and Progress values.
    // map = { "variables1": Complete, "from_str": None, ... }
    todo!();
}

fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
    let mut count = 0;
    for map in collection {
        for val in map.values() {
            if val == &value {
                count += 1;
            }
        }
    }
    count
}

fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
    // collection is a slice of hashmaps.
    // collection = [{ "variables1": Complete, "from_str": None, ... },
    //     { "variables2": Complete, ... }, ... ]
    todo!();
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn count_complete() {
        let map = get_map();
        assert_eq!(3, count_iterator(&map, Progress::Complete));
    }

    #[test]
    fn count_some() {
        let map = get_map();
        assert_eq!(1, count_iterator(&map, Progress::Some));
    }

    #[test]
    fn count_none() {
        let map = get_map();
        assert_eq!(2, count_iterator(&map, Progress::None));
    }

    #[test]
    fn count_complete_equals_for() {
        let map = get_map();
        let progress_states = vec![Progress::Complete, Progress::Some, Progress::None];
        for progress_state in progress_states {
            assert_eq!(
                count_for(&map, progress_state),
                count_iterator(&map, progress_state)
            );
        }
    }

    #[test]
    fn count_collection_complete() {
        let collection = get_vec_map();
        assert_eq!(
            6,
            count_collection_iterator(&collection, Progress::Complete)
        );
    }

    #[test]
    fn count_collection_some() {
        let collection = get_vec_map();
        assert_eq!(1, count_collection_iterator(&collection, Progress::Some));
    }

    #[test]
    fn count_collection_none() {
        let collection = get_vec_map();
        assert_eq!(4, count_collection_iterator(&collection, Progress::None));
    }

    #[test]
    fn count_collection_equals_for() {
        let progress_states = vec![Progress::Complete, Progress::Some, Progress::None];
        let collection = get_vec_map();

        for progress_state in progress_states {
            assert_eq!(
                count_collection_for(&collection, progress_state),
                count_collection_iterator(&collection, progress_state)
            );
        }
    }

    fn get_map() -> HashMap<String, Progress> {
        use Progress::*;

        let mut map = HashMap::new();
        map.insert(String::from("variables1"), Complete);
        map.insert(String::from("functions1"), Complete);
        map.insert(String::from("hashmap1"), Complete);
        map.insert(String::from("arc1"), Some);
        map.insert(String::from("as_ref_mut"), None);
        map.insert(String::from("from_str"), None);

        map
    }

    fn get_vec_map() -> Vec<HashMap<String, Progress>> {
        use Progress::*;

        let map = get_map();

        let mut other = HashMap::new();
        other.insert(String::from("variables2"), Complete);
        other.insert(String::from("functions2"), Complete);
        other.insert(String::from("if1"), Complete);
        other.insert(String::from("from_into"), None);
        other.insert(String::from("try_from_into"), None);

        vec![map, other]
    }
}

We can use filter method to solve this:

fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
    map.values().filter(|&val| val == &value).count()
}

fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
    collection
        .iter()
        .map(|map| map.values().filter(|&val| val == &value).count())
        .sum()
}

Conclusion

The 18th chapter of Rustlings - Iterators ends here.
TIL:

  • Convert from array to iterator
  • Some useful methods of Iterator

Thanks for reading and please add comments below if you have any questions